شناسایی موانع و تسهیل‌کننده‌های توسعه کشاورزی دیجیتال در استان کرمانشاه: کاربرد تحلیل میدان نیرو

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ترویج و آموزش کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

چکیده

پژوهش حاضر با هدف شناسایی موانع و تسهیل‌کننده‌های توسعه کشاورزی دیجیتال در استان کرمانشاه به‌صورت آمیخته (کیفی-کمی) انجام شد. جامعه پژوهش در بخش کیفی کارشناسان و افراد صاحب‌نظر در زمینه کشاورزی دیجیتال به تعداد 18 نفر بودند. تحلیل داده‌های فاز کیفی با استفاده از دو مرحله کدگذاری باز و محوری انجام شد که به شناسایی 35 مانع در قالب شش دسته عامل آموزشی، نهادی، زیرساختی، مدیریتی، روان‌شناختی و اقتصادی و 21 تسهیل‌کننده در قالب چهار دسته عامل آموزشی، نهادی، زیرساختی و مدیریتی انجامید. بر مبنای نتایج، موانع موجود در مسیر توسعه کشاورزی دیجیتال بیش از تسهیل‌کننده‌ها می‌باشد. در مرحله بعدی موانع و تسهیل‌کننده‌های شناسایی‌شده در قالب پرسشنامه تنظیم و به بررسی وضعیت موجود آن‌ها پرداخته شد. جامعه آماری بخش کمی پژوهش کارشناسان ستادی مدیریت هماهنگی ترویج استان به تعداد 22 نفر بودند که با توجه به تعداد آن‌ها تمام شماری انجام شد. پس از تکمیل پرسشنامه‌ها، داده‌های به‌دست‌آمده کدگذاری شده و بر مبنای روش تحلیل میدان نیرو توصیف و تحلیل شدند. بر اساس نتایج، برآیند امتیاز نیروهای تسهیل‌کننده در سه بعد آموزشی، نهادی و مدیریتی بیش از موانع بود. اما در مجموع قدرت موانع بیشتر از تسهیل‌کننده‌ها بود که نشان می‌دهد توسعه کشاورزی دیجیتال با توجه به موانع فراوان نیازمند برنامه‌ریزی و مدیریت صحیح برای توسعه می‌باشد. با معرفی اقدامات اجرایی توسط صاحب‌نظران و بررسی تأثیر آن‌ها بر قدرت موانع و تسهیل‌کننده‌ها، نیروی موانع کاهش و بر قدرت تسهیل‌کننده‌ها افزوده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying Obstacles and Facilitators of Digital Agriculture Development in Kermanshah Province: Application of Force Field Analysis

نویسندگان [English]

  • Amirhossein Alibaygi
  • Masoumeh Taghibaygi
Department of Agricultural Extension and Education, College of Agriculture & Natural Resources, Razi University, Kermanshah, Iran
چکیده [English]

A B S T R A C T
The current research was conducted to identify barriers and facilitators of digital agriculture development in Kermanshah province in a mixed (qualitative-quantitative) manner. The research community in the qualitative section consisted of 18 experts in the field of digital agriculture. The research community in the qualitative section consisted of 18 experts and experts in the field of digital agriculture, who were selected in a purposeful and snowball manner. Qualitative phase data analysis was done using two stages of open and axial coding, which led to the identification of 35 barriers in the form of six categories of managerial, psychological, economic, infrastructural, institutional, and educational factors and 21 facilitators in the form of four categories of infrastructural and management institutional, and educational factor. Based on the results, there are more obstacles in the path of digital agriculture development than facilitators. In the next step, the identified barriers and facilitators were prepared in the form of a questionnaire, and their current status was examined. The statistical population of the quantitative part of the research was 22 experts from the coordination management headquarters of the province. After completing the questionnaires, the obtained data were coded, described, and analyzed based on the force field analysis method. Based on the results, the brand scored the facilitating forces in the three educational, institutional, and managerial dimensions more than the obstacles. However, overall, the power of the obstacles was greater than that of the facilitators, which shows that the development of digital agriculture requires proper planning and management due to many obstacles. By introducing executive measures by experts and examining their impact on the power of barriers and facilitators, the power of obstacles was reduced, and the power of facilitators was increased.
Extended Abstract
Introduction
It is necessary to quickly implement strategies to improve production techniques and ways of organizing agricultural systems to increase their flexibility for sustainable agricultural development. Meanwhile, digital agricultural technologies have been proposed to achieve increased productivity, sustainable agricultural development, and reduce food insecurity. Based on this, the leading research identifies the barriers and facilitators of digital agriculture development in Kermanshah province using force field analysis.
 
Methodology
The approach of the current research was mixed (qualitative-quantitative), and in terms of Sequential research design, it was exploratory. The research community in the qualitative section of experts and experts in the field of digital agriculture technology in knowledge-based companies and agricultural jihad centers of Kermanshah province were 18 people who were selected in a purposeful and snowball manner. The statistical population of the quantitative part of the research was the experts of the coordination management headquarters of the province, consisting of 22 people. According to their number, a complete count was made. Data analysis in the qualitative part was done using two stages of open and central coding, grounded theory using Maxqdawin18 software, which identified barriers and facilitators of digital agriculture development. In the next step, the identified barriers and facilitators were prepared in the form of a questionnaire, and their current status was examined.
 
Results and discussion
In order to identify the obstacles and facilitators of digital agriculture development, interviews were conducted with 18 experts in Jihad Agriculture Organization and knowledge-based companies in the first stage. The result of this step was the identification of 35 key concepts in the field of obstacles and 21 concepts in the field of facilitators of digital agriculture development. The categories created for the development of digital agriculture include educational, institutional, infrastructural, and managerial factors, and the categories related to the obstacles to the development of digital agriculture include managerial, infrastructural, educational, psychological, institutional, and economic factors. After identifying the barriers and facilitators, the current status of each related item and factor was examined in the next step. In the educational, institutional, and managerial factors, facilitators had a higher score, while in the infrastructure, psychological, and economic factors, obstacles received a higher score. After identifying the facilitators and barriers to the development of digital agriculture and examining the impact of each on the development or non-development of digital agriculture, the next step was to identify effective enforcement measures on the facilitating forces and barriers. In order to weaken the obstacles, executive measures were identified in this field, six important executive measures, namely, the use of the capacity of domestic knowledge-based companies to build and develop cheap and suitable modern digital technologies for small agricultural production units, investment by the government to prepare and produce native digital tools suitable for Iran's agricultural conditions and their training to farmers, suitable planning for empowering universities and organizations in charge of agricultural education in order to train and improve the digital agriculture literacy of managers, agricultural experts and students, introducing digital technologies, institutionalizing the culture of using them and providing training on how to use them through popular media such as television, development of mechanization of agriculture, improvement of digital agriculture infrastructure such as internet and wireless networks for rural areas and providing practical training and results on the effects of digital technologies on agriculture in order to gain their views on these technologies were identified.
 
Conclusion
The fourth revolution of agriculture" is called "digital Agriculture" and, in its form, is the peak of scientific agriculture, as a solution to the future challenges of agricultural and food systems, a promising means to sustainably strengthen food production, improve resource management and the environment is considered better, in this regard, in different countries such as America, Brazil, and even some developing countries, by planning and providing infrastructure, the development and expansion of these technologies have been facilitated, but in Iran, as the results of the research showed in the direction of its development, there are obstacles and facilitators; also the result of the score of obstacles is more than the facilitators, and it shows that there are many obstacles in the development of digital agriculture that it is necessary to get more acquainted with the activists of the agricultural sector and farmers by proper planning and removing the existing obstacles. With this technology and its development, it was expanded.
 
Funding
This work is based upon research funded by Iran National Science Foundation (INSF) under project No, 4024719.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
The authors declared no conflicts of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Digital Agriculture
  • Sustainable Food Security
  • Obstacles
  • Facilitators
  • Fourth Revolution of Agriculture
  1. آزادفر، مرجان؛ لشگرآرا، فرهاد؛ فرج‌اله حسینی، سید جمال؛ امیدی نجف‌آبادی، مریم و افشاری، حامد. (1400). شناسایی و رتبه‌بندی عوامل مؤثر بر بهبود امنیت غذایی بر اساس نقش فناوری نانو. مجله پژوهش‌های ترویج و آموزش کشاورزی، 14(3)، 16-1. https://doi.org/10.30495/jaeer.2022.57382.10857
  2. اکبری، محمدرضا؛ پیش بهار، اسماعیل و دشتی، قادر. (1399). شناسایی عوامل مؤثر بر ناامنی غذایی خانوارهای روستایی ایران: کاربرد الگوی لاجیت ترتیبی تعمیم‌یافته. فصلنامه مطالعات اقتصادی کاربردی ایران، 9 (35)، 125-91. https://doi.org/10.22084/aes.2020.21656.3058
  3. بیاناتی، نسرین؛ محمدی، یاسر و اعظمی، موسی. (1401). واکاوی وضعیت و تبیین‌کننده‌های امنیت غذایی در بین خانوارهای روستایی شهرستان بهار، استان همدان. فصلنامه پژوهش‌های روستایی، 13(2)، 313-298. https://doi.org/ 10.22059/jrur.2022.328467.1684
  4. Azadfar, M., Lashgarara, F., Farjaleh Hosseini, S. J., Omid Najafabadi, M., & Afshari, H. (2021) of nanotechnology. Journal of Agricultural Extension and Education Research, 14 (3), 1-16.. https://doi.org/10.30495/jaeer.2022.57382.10857. [In Persian].
  5. Akbari, M., Pishbahar, E., & Dashti, G. (2020). Identifying the effective factors on food insafety in Iranian Rural Households: Application of generalized ordered logit model. Journal of Applied Economics Studies in Iran9(35), 91-125. https://doi.org/10.22084/aes.2020.21656.3058 [In Persian].
  6. Ashoori, D., Allahyari, M.S., & Damalas, C. A. (2017). Adoption of conservation farming practices for sustainable rice production among small-scale paddy farmers in northern Iran. Paddy Water Environ,15, 237–248. https://doi.org/10.1007/s10333-016-0543-1.
  7. Amoussohoui, R., Arouna, A., Bavorova, M., Verner, V., Yergo, W., & Banout, J. (2023). Analysis of the factors influencing the adoption of digital extension services: evidence from the RiceAdvice application in Nigeria. The Journal of Agricultural Education and Extension. https://doi.org/10.1080/1389224X.2023.2222109.
  8. Abdulai, A.R., KC, K.B., & Fraser, E. (2021). What factors influence the likelihood of rural farmer participation in digital agricultural services? Experience from smallholder digitalization in Northern Ghana. Outlook on Agriculture, 52(1) 57–66. https://doi.org/10.1177/00307270221144641.
  9. Boazar, M., Abdeshahi, A., & Yazdanpanah, M. (2020). Changing rice cropping patterns among farmers as a preventive policy to protect water resources. J. Environ. Plan. Manag, 63, 2484–2500. https://doi.org/10.1080/09640568.2020.1729705.
  10. Bellon Maurel, V., Brossard, L., Garcia, F., Mitton, N., & Termier, A. (2022). Agriculture and Digital Technology: Getting the most out of digital technology to contribute to thetransition to sustainable agriculture and food systems. 1-185. https://doi.org/10.1139/facets-2021-0017.
  11. Bayanati, N., Mohammadi, Y., & Aazami, M. (2022). The Status and Determinants of Food Security among Rural Households in Bahar County, Hamadan Province. Journal of Rural Research, 13(2), 298-313. https://doi.org/ 10.22059/jrur.2022.328467.1684. [In Persian].
  12. Bolfe, E.L.; Jorge, L.A.D.C., & Sanches, I.D.A. (2020); Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.D.C.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture, 10, 653. https://doi.org/10.3390/agriculture10120653.
  13. Colussi, J., Morgan, E.L., Schnitkey, G.D., & Padula, A.D. (2022). How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil. Agriculture, 12(611). 1-24. https://doi.org/10.3390/agriculture12050611.
  14. Dissanayake, C.A.K., Jayathilake, W., Wickramasuriya, H.V.A., Dissanayake, U., Kopiyawattage, K.P.P., & Wasala, W.M.C.B. (2022). Theories and models of technology adoption in agricultural sector. Hum. Behav. Emerg. Technol. https://doi.org/10.1155/2022/9258317.
  15. Gumbi, N., Gumbi, L., & Twinomurinzi, H. (2023). Towards Sustainable Digital Agriculture for Smallholder Farmers: A Systematic Literature Review. Sustainability, 15(5325), 1-20. doi: 10.1038/nature10452.
  16. Kaur, A., & Singh, R. (2021). Perception and Attitude of Agripreneurs toward Social Media Tools for Attaining Agribusiness Benefits. Indian J. Posit. Psychol, 12, 379–384.
  17. Lowenberg-DeBoer, J., & Erickson, B. (2019). Settingtherecordstraight on precision agriculture adoption. Agronomy Journal, 111, 1–18. https://doi.org/10.2134/agronj2018.12.0779.
  18. Pishnyak, A., & Khalina, N. (2021). Perception of new technologies: Constructing an innovation openness index. Foresight STIGov. 2021, 15, 39–55. Doi:10.17323/2500-2597.2021.1.39.54.
  19. Rechard, M. J., & Hulter, J. (2019). Dissemination of precision farming in Germany, acceptance, adoption, knowledge transfer and training activities. Percision agriculture, 10(6), 525-545. https://doi.org/10.1007/s11119-009-91.
  20. Savari, M., Eskandari Damaneh, H., Eskandari Damaneh, H., & Cotton, M. (2023). Integrating the norm activation model and theory of planned behaviour to investigate farmer Pro- environmental behavioural intention. Scientific Reports, 13(5584), 1-14.
  21. Shokri, N., & Asari Arai, A. (2020). Evaluation of factors affecting food security in Kermanshah province (using Chandak regression method). Journal of Agricultural Economics Research, 12(1), 202-181. https://doi.org/20.1001.1.20086407.1399.12.45.10.0. [In Persian].
  22. Thomas, R.J., O’Hare, G., & Coyle, D. (2023). Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production. Technol. Forecast. Soc. Chang, 189, 122374. https://doi.org/10.1016/j. techfore.2023. 122374.
  23. Van der Burg, S., Bogaardt, M.-J. and Wolfert, S. (2019). Ethics of Smart Farming: Current Questions and Directions for Responsible Innovation towards the Future. NJAS - Wageningen J. Life Sci, 90-91, 100289. https://doi.org/10.1016/j.njas.2019.01.001.
  24. Wolfert S, Ge L, Verdouw C., & Bogaardt, M. (2017) Big data in smart farming–a review. Agric Syst, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023.