شناسایی عوامل مؤثر بر تمایل کشاورزان شهرستان باغملک نسبت به پذیرش سیستم‌های آبیاری تحت‌فشار: کاربرد مدل پذیرش فناوری دیویس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ترویج و آموزش کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 گروه ترویج و آموزش کشاورزی و توسعه روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

10.22059/jrur.2024.367936.1885

چکیده

هدف اصلی این پژوهش شناسایی عوامل مؤثر بر تمایل کشاورزان نسبت به پذیرش سیستم‌های آبیاری تحت‌فشار در میان کشاورزان بخش مرکزی شهرستان باغملک با استفاده از مدل پذیرش فناوری (TAM) است. جامعه آماری، شامل کلیه کشاورزان بخش مرکزی شهرستان باغملک واقع در استان خوزستان (3005N=) هست که بر اساس جدول کرجسی و مورگان حجم نمونه 343 نفر برآورد شد که با استفاده از روش نمونه‌گیری طبقه‌ای با انتساب متناسب انتخاب شدند. ابزار جمع‌آوری داده‌ها پرسشنامه هست که روایی آن بر اساس نظر اعضای هیئت‌علمی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان و پایایی آن از طریق آلفای کرونباخ تعیین شد (850/0-774/0α=). از طرفی، از شاخص میانگین واریانس استخراج‌شده (AVE) برای تعیین روایی سازه و شاخص پایایی ترکیبی (CR) برای تعیین پایایی مدل استفاده شد. نتایج معادلات ساختاری نشان داد که متغیرهای نگرش، سودمندی و سهولت درک شده، 68 درصد از تغییرات متغیر تمایل کشاورزان به پذیرش سیستم‌های آبیاری تحت‌فشار را تبیین کردند. همچنین، بر اساس نتایج به‌دست‌آمده از مدل نهایی پذیرش فناوری، متغیر سهولت درک شده با 28 درصد اثر مستقیم و 44 درصد اثر غیرمستقیم با نقش میانجی نگرش بیشترین تأثیر را بر تمایل کشاورزان نسبت به پذیرش سیستم‌های آبیاری تحت‌فشار داشت. در این راستا توصیه می‌شود سازمان جهاد کشاورزی شهرستان باغملک از طریق مراکز خدمات کشاورزی زمینه لازم جهت اشتراک‌گذاری تجارب کشاورزانی که از سیستم‌های آبیاری تحت‌فشار استفاده نمودند را فراهم نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying the Influencing Factors on the Intention of Farmers of Baghmalek County to Accept Pressurized Irrigation Systems: Application of Davies' Technology Acceptance Model

نویسندگان [English]

  • Abolmohamad Bondori 1
  • Ameneh savari mombeni 2
  • moslem savari 1
1 Department of Agricultural Extension and Education, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
2 Department of Agricultural Extension and Education, Faculty of Agriculture Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
چکیده [English]

A B S T R A C T
The main purpose of this research was to explain the factors affecting the intention to accept pressure irrigation systems among farmers in the central part of Baghmalek county using the technology acceptance Mode (TAM). The statistical population included all the farmers in the central part of Baghmalek county, Khuzestan province (N= 3005); based on the Karjesi and Morgan table, a sample size of 343 farmers was selected using the stratified sampling method with proportional assignment. The data collection tool was a questionnaire whose validity was based on the opinion of the Khuzestan University of Agricultural Sciences and Natural Resources faculty members, and its reliability was determined through Cronbach's alpha (α = 0.774-0.850). On the other hand, the Average Variance Extracted Index (AVE) was used to determine construct validity, and the Composite Reliability Index (CR) was used to determine model reliability. The results of structural equations showed that the variables of attitude, usefulness, and perceived ease predicted 68% of the changes in the variable of intention of farmers to accept pressure irrigation, also, based on the results obtained from the final model of technology acceptance, the perceived ease variable with 28% direct effect and 44% indirect effect with the mediating role of attitude has the most significant effect on farmers' willingness to accept pressure irrigation systems. In this regard, it is recommended that the Agricultural Jihad organization of Baghmalek county provides the necessary ground for sharing the experiences of farmers who used pressurized irrigation systems through agricultural service centers.
Extended Abstract
Introduction
Today, the water crisis increasingly worries public opinion and engages the scientific. So, issues related to the water crisis and management are recognized as the second most important global issue after the population problem from the perspective of the United Nations. The irrigation process is one of the influential factors in improving the productivity of agricultural production in developing countries, especially Iran, and its improvement, management, and efficiency are considered important areas of agricultural development. Water shortage in most countries has caused farmers to use modern methods instead of traditional irrigation methods and have greater control over water consumption. Among the programs implemented in order to reduce water consumption and increase productivity in the agricultural sector is the use of pressurized irrigation methods. According to the results of studies, the irrigation efficiency in the pressurized irrigation system is more than 70 percent, which, compared to the 30 percent efficiency of traditional irrigation methods, indicates a reduction in water losses. Accordingly, to improve irrigation efficiency, measures have been taken in the country, the most important of which has been the use of pressurized irrigation systems by farmers. The main purpose of this research was to explain the factors affecting the intention to accept pressure irrigation systems among farmers in the central part of Baghmalek county using the technology acceptance Mode (TAM). The technology acceptance model is adapted from Fishbein and Ajzen theory of reasoned action. The main components of Davis's technology acceptance model include perceived ease, perceived usefulness, attitude toward use, and behavioral intention.
 
Methodology
This study is applied research in terms of its purpose, non-experimental in terms of the amount and degree of control of variables, and descriptive-survey in terms of data collection.The statistical population included all the farmers in the central part of Baghmolek county, Khuzestan province (N= 3005); based on the Karjesi and Morgan table, a sample size of 343 farmers was selected using the stratified sampling method with proportional assignment. The data collection tool was a questionnaire whose face validity was confirmed by the Department of Agricultural Extension and Education faculty members. In addition, pre-test and Cronbach's alpha coefficients were used to determine the degree of reliability. Descriptive statistics (frequency, percentage, mean, and standard deviation) were used to analyze the data, and correlation coefficients and structural equation modeling were used as inferential statistics to examine the relationship and impact of research variables.
 
Results and discussion
According to the findings, the respondents' attitude (45.8%) regarding pressurized irrigation is relatively favorable. In fact, farmers have a positive attitude towards the use of pressurized irrigation. The intention (53.3%) of farmers to use irrigation under pressure is relatively unfavorable, and the intention (51.6%) of respondents to use irrigation systems under pressure is relatively unfavorable. The correlation analysis results showed a positive and significant relationship between the variables of perceived usefulness, perceived ease, and attitude with farmers' intention to accept the pressurized irrigation system at the 0.01 percent level. The results of structural equations showed that the variables of attitude, usefulness, and perceived ease predicted 68% of the changes in the variable of intention of farmers to accept pressure irrigation, also, based on the results obtained from the final model of technology acceptance, the perceived ease variable with 28% direct effect and 44% indirect effect with the mediating role of attitude has the most significant effect on farmers' intention to accept pressure irrigation systems.
According to the findings of the research, perceived ease, both directly and indirectly, is a good predictor for the variable of farmers' intention to use pressure irrigation; That is, the more positive the farmer's understanding of the perceived ease of using pressure irrigation, the more likely he is to decide to use it. Based on the research results, a positive and significant relationship was found between perceived usefulness and ease directly and indirectly with farmers' attitudes regarding pressurized irrigation systems. In order to increase the acceptance of pressure irrigation, it is necessary to focus on the attitude of farmers towards the use and their understanding of the ease and usefulness of the systems.
 
Conclusion
It is recommended that the agricultural Jahad service centers hold orientation courses, classes, workshops, and educational seminars to increase farmers' perceptions of ease and usefulness and improve their attitudes regarding the benefits of pressurized irrigation systems. This will increase farmers' willingness to accept Irrigation systems under pressure.
 
Funding
There is no funding support.
 
Authors’ Contribution
The authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
The authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Intention
  • Accept
  • Pressurized Irrigation System
  • Technology Accept Model
  • Baghmalek County
  1. عبیات، ناهید؛ عبیات، مصطفی و عبیات، مرتضی. (1400). بررسی تغییرات کاربری اراضی و اثر آن بر روند فرسایش خاک در حوضه باغملک با استفاده از شبکه عصبی مصنوعی و مدل RUSLE. محیط‌شناسی، 47(1)، 89-110. DOI: 10.22059/JES.2021.324250.1008180
  2. بذرافشان، جواد؛ موسی پور، مهدی و حاتمی، داوود. (1400). تحلیل اثرات خشک‌سالی بر اقتصاد روستایی شهرستان باغ‌ملک (طی دوره زمانی 1390-1380). جغرافیا و روابط انسانی، 4 (1)، 219-201. Doi: 10.22034/gahr.2021.286083.1552
  3. بهبهانی مطلق، محمود؛ شریف‌زاده، محمد شریف؛ عبدالله زاده، غلامحسین و محبوبی، محمدرضا. (1396). واکاوی رفتار کشاورزان در پذیرش فناوری آبیاری تحت‌فشار در شهرستان دشتستان. مجله علوم ترویج و آموزش کشاورزی ایران، 13 (1)، 103-89.
  4. چوبچیان، پوریا؛ کیامهر، مهدی و ملکی، علی. (1396). بررسی چرایی عدم پذیرش فناوری آبیاری قطرهای توسط کشاورزان در شهرستان سلماس. فصلنامه مدیریت نوآوری، 6(3)، 168-141.
  5. قدمی فیروزآبادی، علی؛ سیدان، محسن و دهقانی سانیچ، حسین. (1397). بهره‌وری مصرف آب آبیاری و تحلیل اقتصادی تولید سیب‌زمینی در دو سیستم آبیاری بارانی و جویچه‌ای در دشت بهار استان همدان. نشریه آبیاری و زهکشی ایران، 12(6)، 1407-1417. https://idj.iaid.ir/article_85907.html
  6. قنبری، سیروس و کریمی، ایمان. (1395). بررسی تأثیر آموزش فناوری اطلاعات و ارتباطات بر پذیرش اثربخش فناوری اطلاعات بر اساس مدل پذیرش تکنولوژی (TAM). مدیریت بر آموزش سازمان‌ها، 5(1)، 36-9.
  7. حمدی، کریم و غفوری، معصومه. (1392). بررسی و تعیین عوامل محیطی در پذیرش تکنولوژی جدید در معلمان مقطع متوسطه در آموزش‌وپرورش ناحیه هشت تهران. مدیریت فرهنگی، 7(21)، 117-130.
  8. حمیدپور، مهسا و سعیدنیا، حمیدرضا. (1397). نگرش دانشجویان تهران نسبت به خرید اینترنتی بر اساس توسعه مدل پذیرش تکنولوژی و تعیین تأثیر جنسیت بر آن. مدیریت بازاریابی، 1(1)، 18-1.
  9. حیدریه، عبدالله؛ سید حسینی، محمد و شهابی، علی. (1392). شبیه‌سازی مدل پذیرش فناوری در ایران با رویکرد پویایی سیستم (مطالعه موردی بانکداری ایران). مدیریت توسعه فناوری، 1(1)، 98-67.
  10. جلالیان، حمید. (1391). تحلیل اثرات نظام‌های آبیاری نوین بر وضعیت بهره‌برداران کشاورزی در شهرستان خدابنده. فصلنامه اقتصاد فضا و توسعه روستایی، 1(2)، 64-41.
  11. محمدی، علی‌اکبر و علیپور، حسن. (1396). عوامل مؤثر بر توسعه سامانه‌های نوین آبیاری از دیدگاه کارشناسان جهاد کشاورزی استان‌های تهران و البرز. پژوهش آب در کشاورزی، 31(3)، 468-455.
  12. موحدی، رضا؛ ایزدی، نسیم و وحدت ادب، رضا. (1396). بررسی عوامل مؤثر بر پذیرش فناوری آبیاری تحت‌فشار بین کشاورزان شهرستان اسدآباد. پژوهش آب در کشاورزی، 31(2)، 300-287.  DOI: 10.22092/jwra.2017.113172
  13. شفیعی، بهمن؛ برقی، حمید و قنبری، یوسف. (1398). بررسی اثرات خشک‌سالی بر وضعیت اقتصادی، اجتماعی و محیطی نواحی روستایی از دید سرپرستان خانوارها (مطالعه موردی دهستان حسن آباد در شهرستان اسلام آباد غرب). تحقیقات کاربردی علوم جغرافیایی، 19(55)، 191-173. 10.29252/jgs.19.55.173.  DOI:
  14. توکلی، ناهید؛ شاهین، آرش؛ جهانبخش، مریم؛ مختاری، حبیب‌الله و رفیعی، مریم. (1393). عوامل مؤثر بر پذیرش و استفاده از سامانه پرونده پزشکی الکترونیک (EMR) در پلی کلینیک مرکزی صنعت نفت اصفهان با استفاده از مدل پذیرش تکنولوژی (TAM). مجله بیمارستانی، 2(5). 1-11.
  15. طالقانی، محمد؛ تقی‌زاده جورشری، محمدرضا و میرزاپور، فاطمه. (1392). ارزیابی روند توسعه مدل پذیرش تکنولوژی (TAM). ماهنامه مهندسی مدیریت، 6(53). 43-48.
  16. طهماسبی، اصغر؛ عسکری بزایه، فاطمه؛ نورمحمدی، راضیه و رضوی زاده، سیدنورالدین. (1399). تبیین تمایل کشاورزان به استفاده از فناوری‌های نوین آبیاری در دهستان جوادآباد و ورامین. مجله آبیاری و زهکشی ایران، 14 (5). 1686-1699.
  17. تقوایی، مسعود؛ احمدیان، مهدی و علی زاده، جابر. (1391). تحلیل فضایی و سنجش توسعه‌یافتگی دهستان‌های شهرستان میاندوآب با استفاده از مدل تاپسیس فازی. مجله برنامه‌ریزی فضایی، 1(3). 131-154.
  18. سهرابی، برهان و رضایی، جواد. (1397). تأثیر سطوح مختلف کم آبیاری در آبیاری بارانی بر عملکرد و کارایی مصرف آب پنبه. مجله پژوهش‌های پنبه ایران، 6(2). 117-130. DOI: 10.22092/ijcr.2019.121152.1109
  19. Aizen I (1991). The theory of plannedbehavior. Organizational Behavior and Human Decision Process, 50,179-211. DOI: 10.4135/9781446249215.n22.
  20. Ajili, A., Salehi, S., Rezaei-moghaddam, K., Hayati, D., & Karbalaee, F. (2012). Estimating the model of investigating attitude and intention in the usage of variable rate irrigation technology. American Journal of Experimental Agriculture, 2(3), 542. DOI:10.9734/AJEA/2012/1267.
  21. Akritidi, D., Gallos, P., Koufi, V., and Malamateniou, F. (2022). Using an Extended Technology Acceptance Model to Evaluate Digital Health Services. Studies in Health Technology and Informatics, 295, 530-533. Doi:10.3233/shti220782. 
  22. Azami, A., Zarafshani, K., Dehghani Sanij, H. & Gurji, A. (2011). Analyzing the educational needs of users of pressurized irrigation systems in Kermanshah province (case study of Sanghar county). Water and soil journal, 25(5). 1119-1127.  https://doi.org/10.22067/jsw.v0i--.11222 [In Persian].
  23. Bagheri, A., Bondori, A., Allahyari, M. S., and Surujlal, J. (2021). Use of biologic inputs among cereal farmers: application of technology acceptance model. Environment, Development and Sustainability, 23(4), 5165-5181. Doi.org/10.1007/s10668-020-00808-9.
  24. Bagheri, A., Bondori, A., and Damalas, C. A. (2019). Modeling cereal farmers’ intended and actual adoption of integrated crop management (ICM) practices. Journal of Rural Studies, 70, 58-65. Doi.org/10.1016/j.jrurstud.2019.05.009
  25. Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the association for information systems, 8(4), 31-60.
  26. Bjornlund, H., Nicol, L., and Klein, K. K. (2009). The adoption of improved irrigation technology and management practices—A study of two irrigation districts in Alberta, Canada. Agriculturalwater management, 96(1), 121-131. Doi.org/10.1016/j.agwat.2008.07.009.
  27. Boazar, M., Yazdanpanah, M., and Abdeshahi, A. (2019). Response to water crisis: How do Iranian farmers think about and intent in relation to switching from rice to less water-dependent crops?. Journal of hydrology, 570, 523-530. https://doi.org/10.1016/j.jhydrol.2019.01.021
  28. Bondori, A., Bagheri, A., Sookhtanlou, M., and Damalas, C. A. (2021). Modeling farmers’ intention for safe pesticide use: the role of risk perception and use of information sources. Environmental Science and Pollution Research, 28(47), 66677-66686. https://doi.org/10.1007/s11356-021-15266-7
  29. Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. )1989(. User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  30. Eldredge, L. K. B., Markham, C. M., Ruiter, R. A., Fernández, M. E., Kok, G., and Parcel, G. S. (2016). Planning health promotion programs: an intervention mapping approach. John Wiley & Sons.
  31. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  32. Friedlander, L., Tal, A., and Lazarovitch, N. (2013). Technical considerations affecting adoption of drip irrigation in sub-Saharan Africa. Agricultural water management, 126, 125-132. https://doi.org/10.1016/j.agwat.2013.04.014.
  33. Gholami, Z., Ebrahimian, H., & Noory, H. (2015). Investigation of irrigation water productivity in sprinkler and surface irrigation systems (case study: Qazvin Plain). Journal of Irrigation Sciences and Engineerin41(1), 17-30. [In Persian].
  34. Henning, J. B., Stufft, C. J., Payne, S. C., Bergman, M. E., Mannan, M. S., & Keren, N. (2009). The influence of individual differences on organizational safety attitudes. Safety science, 47(3), 337-345. https://doi.org/10.1016/j.ssci.2008.05.003
  35. Holt, J. R., Butler, B. J., Borsuk, M. E., Markowski-Lindsay, M., MacLean, M. G., & Thompson, J. R. (2021). Using the Theory of Planned Behavior to Understand Family Forest Owners’ Intended Responses to Invasive Forest Insects. Society & Natural Resources, 34(8), 1001-1018. https://doi.org/10.1080/08941920.2021.1924330
  36. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic management journal, 20(2), 195-204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
  37. IPCC, 2022: Climate Change. (2022). Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  38. Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision support systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001
  39. Klopping, I. M., & McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information Technology, Learning & Performance Journal, 22(1).
  40. Lee, Y. C. (2006). An empirical investigation into factors influencing the adoption of an e‐learning system. Online information review. https://doi.org/10.1108/14684520610706406
  41. Liu, J., Scanlon, B. R., Zhuang, J., and Varis, O. (2020). Food-energy-water nexus for multi-scale sustainable development. Resources, Conservation Recycling, 154, 104565. DOI: 10.1016/j.resconrec.2019.104565.
  42. Mahboubi, M. Esmailie Aval, M. & Yaghoubi, j. (2017). Impeding and facilitating factors influencing on using new irrigation methods by farmers: Case of West Boshroyeh Township in Southern Khorasan. Journal of Water and Irrigation Management, 1(1). 87-98. [In Persian].
  43. Mantas, J. (2022). Using an Extended Technology Acceptance Model to Evaluate Digital Health Services.
  44. Marcos, K. J., Moersidik, S. S., & Soesilo, T. E. (2021, March). Extended theory of planned behavior on utilizing domestic rainwater harvesting in Bekasi, West Java, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 716, No. 1, p. 012054). IOP Publishing. DOI: 10.1088/1755-1315/716/1/012054
  45. Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision support systems, 56, 103-114. https://doi.org/10.1016/j.dss.2013.05.010
  46. Mohr, S., and Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816-1844. https://doi.org/10.1007/s11119-021-09814-x
  47. Momvandi, A., Omidi Najafabadi, M., Hosseini, J. F., & Lashgarara, F. (2018). The identification of factors affecting the use of pressurized irrigation systems by farmers in Iran. Water, 10(11), 1532. DOI:10.3390/w10111532.
  48. Moon, J. W., and Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6
  49. Namahoot, K. S., & Rattanawiboonsom, V. (2022). Integration of TAM Model of Consumers’ Intention to Adopt Cryptocurrency Platform in Thailand: The Mediating Role of Attitude and Perceived Risk. Human Behavior and Emerging Technologies, 2022. https://doi.org/10.1155/2022/9642998
  50. Park, N., Rhoads, M., Hou, J., & Lee, K. M. (2014). Understanding the acceptance of teleconferencing systems among employees: An extension of the technology acceptance model. Computers in Human Behavior, 39, 118-127. https://doi.org/10.1016/j.chb.2014.05.048
  51. Perry, C., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo, 42.
  52. Raheli, H., Zarifian, S., & Yazdanpanah, M. (2020). The power of the health belief model (HBM) to predict water demand management: A case study of farmers’ water conservation in Iran. Journal of environmental management, 263, 110388. https://doi.org/10.1016/j.jenvman.2020.110388
  53. Sánchez, M., López-Mosquera, N., Lera-López, F., & Faulin, J. (2018). An extended planned behavior model to explain the willingness to pay to reduce noise pollution in road transportation. Journal of cleaner production, 177, 144-154. https://doi.org/10.1016/j.jclepro.2017.12.210
  54. Shin, J., Moon, S., Cho, B. H., Hwang, S., and Choi, B. (2022). Extended technology acceptance model to explain the mechanism of modular construction adoption. Journal of Cleaner Production, 342, 130963. https://doi.org/10.1016/j.jclepro.2022.130963
  55. Ullah, S., Abid, A., Aslam, W., Noor, R. S., Waqas, M. M., & Gang, T. (2021). Predicting behavioral intention of rural inhabitants toward economic incentive for deforestation in Gilgit-Baltistan, Pakistan. Sustainability, 13(2), 617. https://doi.org/10.3390/su13020617
  56. Valizadeh, N., Rezaei-Moghaddam, K., & Hayati, D. (2020). Analyzing Iranian farmers' behavioral intention towards acceptance of drip irrigation using extended technology acceptance model. Journal of Agricultural Science and Technology, 22(5), 1177-1190. [In Persian].
  57. Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51(2), 249-259. https://doi.org/10.1016/j.im.2013.12.003
  58. Wang, Y., Liang, J., Yang, J., Ma, X., Li, X., Wu, J., ... & Feng, Y. (2019). Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. Journal of environmental management, 237, 15-23. https://doi.org/10.1016/j.jenvman.2019.02.070
  59. Warner, L. A., & Diaz, J. M. (2021). Amplifying the Theory of Planned behavior with connectedness to water to inform impactful water conservation program planning and evaluation. The Journal of Agricultural Education and Extension, 27(2), 229-253. https://doi.org/10.1080/1389224X.2020.1844771
  60. Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 177-195. https://doi.org/10.2307/20650284
  61. Zhong, F., Li, L., Guo, A., Song, X., Cheng, Q., Zhang, Y., & Ding, X. (2019). Quantifying the influence path of water conservation awareness on water-saving irrigation behavior based on the Theory of Planned Behavior and structural equation modeling: A case study from Northwest China. Sustainability, 11(18), 4967.  https://doi.org/10.3390/su11184967