واکاوی مؤلفه‌های غذایی اقلیم بد سازگار در شرایط تغییرات اقلیم: مطالعه‌ای مبتنی بر رویکرد مرور سیستماتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ترویج و آموزش کشاورزی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

تغییرات اقلیمی به‌عنوان یکی از چالش‌های اصلی قرن حاضر، اثرات قابل‌توجهی بر سیستم‌های غذایی جهانی گذاشته است. این مطالعه با استفاده از رویکرد مرور نظام‌مند، به بررسی مؤلفه‌های غذایی اقلیم بد سازگار در شرایط تغییرات اقلیمی می‌پردازد. مرور پژوهش‌های پیشین نشان‌دهنده ضعف چارچوب‌های موجود در مؤلفه‌های غذایی اقلیم بد سازگار است. بنابراین هدف پژوهش حاضر تدوین چارچوبی بر شناسایی مؤلفه‌های غذایی اقلیم بد سازگار در شرایط تغییرات اقلیم و ارائه یک تصویر کلی از چگونگی تأثیر بد سازگاری غذایی بر تغییرات اقلیمی است. پژوهش حاضر ازنظر هدف، بنیادی است، و با رویکرد مرور نظام‌مند ادبیات مرتبط با امنیت غذایی، تغییرات اقلیمی و بد سازگاری اقلیمی در فاصله سال‌های 2013 تا 2023، با استفاده از پنج کلیدواژه (Climate Change، Food security، Food insecurity، Climate maladaptive و Water) مشخص و از سه پایگاه فارسی (Magiran،Noormags و SID) و چهار پایگاه لاتین (google Scholar,Sincedirect، Wiley و Pubmed) اطلاعات، جمع‌آوری شد. پس از غربالگری و ارزیابی، تحلیل نهایی روی 127 مقاله انجام شد. با تحلیل مقاله‌ها به‌منظور شناسایی مؤلفه‌های غذایی اقلیم بد سازگار در شرایط تغییرات اقلیم، چهار مؤلفه شامل سیاست‌گذاری‌ها، عوامل اقتصادی، ردپای کربن و ردپای آب مؤثر مشخص شدند، که این عوامل می‌توانند بر بد سازگاری اقلیمی تأثیر بگذارند و اگر سیاست به‌درستی اجرا شوند و راهبردها رو با توجه به فرهنگ هر جامعه به کار ببرند. در نهایت می‌توانند باعث کاهش آسیب‌ها، افزایش امنیت غذایی، کاهش گازهای گلخانه‌ای و سازگاری در برابر تغییرات اقلیمی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the food components of climate maladaptive in the conditions of climate change: A study based on a systematic review approach

نویسندگان [English]

  • zeinab Asadi
  • Farahnaz Rostami Ghobadi
Department of Agricultural Extension and Education, Faculty of Agriculture, Razi University, Kermanshah, Iran
چکیده [English]

A B S T R A C T
Climate change, as one of the major challenges of this century, has had significant impacts on global food systems. This study, using a systematic review approach, examines the dietary components of climate maladaptation under climate change conditions. A review of previous research indicates the weakness of existing frameworks on the dietary components of climate maladaptation. Therefore, the present study aims to develop a framework for identifying the dietary components of climate maladaptation under climate change conditions and to provide an overall picture of how dietary maladaptation affects climate change. The present study is fundamental in terms of its purpose, and with a systematic review approach of the literature related to food security, climate change, and climate maladaptation between 2013 and 2023, using five keywords (Climate Change, Food Security, Food insecurity, Climate maladaptive and Water) and information was collected from three Persian databases (Magiran, Noormags, and SID) and four Latin databases (Google Scholar, ScienceDirect, Wiley, and Pubmed). After screening and evaluation, a final analysis was conducted on 127 articles. By analyzing the articles in order to identify the components of Climate maladaptive food in the context of climate change, four components, including policies, economic factors, carbon footprint, and effective water footprint, were identified, which can affect Climate maladaptation and if policies are implemented correctly and strategies are applied according to the culture of each society. Ultimately, they can reduce damage, increase food security, reduce greenhouse gases, and adapt to climate change.
Extended Abstract
Introduction
Household consumption exerts significant pressure on the environment, accounting for approximately 60% of global greenhouse gas emissions and 50–80% of total resource use. The production and consumption of animal products are associated with higher greenhouse gas emissions than others. For example, red meat consumption accounts for 47% and dairy for 14% of greenhouse gas emissions; another dimension is the water footprint in producing high-carbon food products, which contributes significantly to water scarcity and depletion. Reducing greenhouse gas emissions is essential to ensure that future generations have access to food, requiring changes in consumer behavior reinforced by actions taken by governments, international cooperation, and industry. Healthy eating habits based on sustainable food systems can help reduce environmental impacts. Thus, given the lack of documented studies on food climate maladaptation, the first step should be to identify the components and, ultimately, what model can be used to achieve an adaptive climate in the context of climate change. Accordingly, in order to fill the gap of a comprehensive framework for formulating food maladaptation, citing experiences and studies conducted in various fields of climate change, food security, and climate maladaptation can help formulate an efficient model. Therefore, a systematic review, as a comprehensive approach, examined studies conducted in the fields of climate change, food security, and climate maladaptation, and a theoretical framework was developed based on the frequency of studies.
 
Methodology
The statistical population of this systematic study includes all research articles published in general in the field of climate change on food security and climate maladaptation, which have been evaluated from quantitative and qualitative studies. This article aims to answer the main question of this study, which is to analyze the food components of a climate that is maladaptive under climate change conditions. In the initial search, 932 study titles were identified based on keywords. Duplicate and common articles in the aforementioned databases were eliminated, and 548 studies entered the screening stage. The screening criteria at this stage were relevance to the study topic (title, abstract) and the elimination of unrelated articles, articles presented at conferences, and educational articles, ultimately leaving 127 studies. The results of the review of the considered articles will be presented below.
 
Results and discussion
The main adaptation strategy used by consumers involves changing consumer choices towards climate-friendly food behavior that can help combat climate change, such as reducing the consumption of high-carbon and high-water animal products such as red meat, which is responsible for 47% of greenhouse gas emissions and replacing it with plant-based products such as legumes, which have a low water and carbon footprint, which reduces and adapts to climate change. This is consistent with the results of (Paul et al., 2023; Al-Amin & Ahmed., 2016; Geber et al., 2023; Adesete et al., 2022).
In this regard, the results (Ali & Erenstein, 2017; Hilemelekot et al., 2021; Ayal et al., 2023; Bairagi et al., 2020; Ndiritu & Muricho, 2021; Amare & Simane, 2018; Day et al., 2023; Geber et al., 2023; Palanivel & Shah, 2021; Belay, 2023; Al Dirani et al., 2021; Kogo et al., 2021) show that young people with higher levels of education use coping strategies that are associated with education, extension services, access to credit, awareness, and training. People who adopt more coping strategies have higher levels of food security. On the other hand, achieving appropriate technology for food systems and adapting to them must be appropriate to the culture of each society, which is consistent with the results of (Ho et al., 2016; Asrari et al., 2022; Alvi et al., 2021). Considering the theoretical foundations and reviewing the results of domestic and foreign studies, most researchers have examined the impact of climate change on food security and, vice versa, the impact of consumers on climate change. Their results showed that policies and economic factors are two key components that could cause human societies to adapt to climate change because the availability of resources in the form of projects, programs, technologies, and practices are opportunities for policymakers, consultants, and villagers. New policy frameworks and work programs are needed to transition from unsustainable consumption patterns to a more resilient food system. To ensure stable and sustainable food security for communities. Also, carbon and water footprint components play a very important role in reducing greenhouse gas emissions and climate change. Because both of these components are directly related to climate change. An increase in carbon footprint leads to global warming and excessive water consumption. Reducing these footprints through changing food patterns and eating habits is an important step towards reducing climate change.
 
Conclusion
The results showed that sustainable food behaviors compatible with climate change reduce greenhouse gas emissions. We can accept political, economic, and other factors as factors affecting food security when people have chosen an appropriate consumption pattern and diet. Suppose people cannot adapt their food patterns to climate change. In that case, we have not been able to transform the concept of dietary maladaptation into dietary adaptation to climate change. Therefore, we are looking for this missing link (dietary maladaptation), that is, consumer behavior, to show what place it has between climate change and food security. In this study, which was conducted as a systematic review, the results of the articles studied showed that most studies were conducted on the impact of climate change on food security and a small number on climate maladaptation. However, they did not address the issue of food maladaptation from the consumers' perspective. This research gap was not mentioned in previous studies, and as a missing link, it is necessary to address this issue in future research.
 
Funding
This article is derived from a PhD thesis in Agricultural Development under the financial support of the National Science Foundation of Iran (INSF) under project number “4032785”.
 
Authors’ Contribution
The authors had equal contributions in all stages and parts of the research (ideation, review of sources, analysis, preparation of the initial version of the article, editing the article).
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We hereby express our gratitude and appreciation for the financial support of the National Science Foundation of Iran.

کلیدواژه‌ها [English]

  • Climate maladaptive
  • Climate Change
  • Food Security
  • Systematic Review
  1. اردالی، فاطمه و طرازکار، محمدحسن. (1403). تعیین‌کننده‌های اقتصادی و اجتماعی ناامنی غذایی کشاورزان در مناطق روستایی (موردمطالعه: دهستان خیر شهرستان استهبان). پژوهش‌های روستایی، 15(2)، 316-333. DOI: 10.22059/JRUR.2024.364623.1869
  2. رحیمی، حمزه و صادقی‌نیا، علیرضا. (1402). تغییرات اقلیمی و کشاورزی در شهرستان نجف‌آباد: ارزیابی تأثیرات و راهبردهای سازگاری. پژوهش‌های روستایی، 14(4)، 592-609. DOI: 10.22059/JRUR.2023.355890.1830
  3. قهرمان‌زاده، محمد؛ جعفرزاده، فرناز و فتحی، رقیه. (1401). تحلیل ناامنی غذایی و ارزش اقتصادی غذا در ایران. اقتصاد و توسعه کشاورزی، 36(3)، 207-225.DOI: 10.22059/IJAEDR.2018.244244.668507
  4. Abbas, S., Kousar, S., & Khan, M. S. (2022). The role of climate change in food security; empirical evidence over Punjab regions, Pakistan. Environmental Science and Pollution Research29(35), 53718-53736.‌ DOI:10.1007/s11356-022-19315-7
  5. Adesete, A. A., Olanubi, O. E., & Dauda, R. O. (2022). Climate change and food security in selected Sub-Saharan African Countries. Environment, Development and Sustainability, 1-19. DOI: 10.1007/s10668-022-02681-0
  6. Al Dirani, A., Abebe, G. K., Bahn, R. A., Martiniello, G., & Bashour, I. (2021). Exploring climate change adaptation practices and household food security in the Middle Eastern context: a case of small family farms in Central Bekaa, Lebanon. Food Security13(4), 1029-1047.‌ DOI: 10.1007/s12571-021-01188-2
  7. Al-Amin, A. Q., & Ahmed, F. (2016). Food security challenge of climate change: an analysis for policy selection. Futures83, 50-63.‌ DOI:10.1016/j.futures.2016.04.002
  8. Ali, A., & Erenstein, O. (2017). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management16, 183-194. DOI:10.1016/j.crm.2016.12.001
  9. Alvi, S., Roson, R., Sartori, M., & Jamil, F. (2021). An integrated assessment model for food security under climate change for South Asia. Heliyon7(4). DOI:10.1016/j.heliyon.2021.e06707
  10. Amare, A., & Simane, B. (2018). Does adaptation to climate change and variability provide household food security? Evidence from Muger sub-basin of the upper Blue-Nile, Ethiopia. Ecological Processes7, 1-12.‌ DOI:10.1186/s13717-018-0124-x
  11. Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current opinion in plant biology56, 197-202. DOI: 10.1016/j.pbi.2019.12.006
  12. Ardali, F., & Tarazkar, M. H. (2024). Economic and social determinants of food insecurity among farmers in rural areas (case study: Khair village, Estahban city). Rural Research, 15(2), 316-333. DOI: 10.22059/JRUR.2024.364623.1869 [In Persian]
  13. Asrari, A., Omidi Najafabadi, M., & Farajollah Hosseini, J. (2022). Modeling resilience behavior against climate change with food security approach. Journal of Environmental Studies and Sciences12(3), 547-565.‌ DOI:10.1007/s13412-022-00763-z
  14. Auclair, O., & Burgos, S. A. (2021). Carbon footprint of Canadian self-selected diets: Comparing intake of foods, nutrients, and diet quality between low-and high-greenhouse gas emission diets. Journal of Cleaner Production, 316, 128245.‌ DOI:10.1016/j.jclepro.2021.128245
  15. Ayal, D. Y., Getahun, A. B., Ture, K., Zeleke, T. T., & Tesfaye, B. (2023). Climate variability induced household food insecurity coping strategy in Gambella Zuria Woreda, Southwestern, Ethiopia. Climate Services30, 100382.‌ DOI:10.1016/j.cliser.2023.100382
  16. Bahiru, A., Senapathy, M., & Bojago, E. (2023). Status of household food security, its determinants, and coping strategies in the Humbo district, Southern Ethiopia. Journal of Agriculture and Food Research, 11, 100461.‌ DOI:10.1016/j.jafr.2022.100461
  17. Bairagi, S., Mishra, A. K., & Durand-Morat, A. (2020). Climate risk management strategies and food security: Evidence from Cambodian rice farmers. Food Policy, 95, 101935.‌ DOI:10.1016/j.foodpol.2020.101935
  18. Belay, A., Mirzabaev, A., Recha, J. W., Oludhe, C., Osano, P. M., Berhane, Z., ... & Solomon, D. (2023). Does climate-smart agriculture improve household income and food security? Evidence from Southern Ethiopia. Environment, Development and Sustainability, 1-28.‌ DOI: 10.1007/s10668-023-03307-9
  19. Binns, C. W., Lee, M. K., Maycock, B., Torheim, L. E., Nanishi, K., & Duong, D. T. T. (2021). Climate change, food supply, and dietary guidelines. Annual review of public health, 42(1), 233-255.‌ DOI:10.1146/annurev-publhealth-012420-105044
  20. Borromeu, M., Maia, L., Borromeu, N., da Costa Barreto, D., & Almeida, M. (2023). PHILOSOPHICAL ANALYSIS OF SOCIAL JUSTICE, HUNGER, FOOD PRODUCTION AND DISTRIBUTION.‌ DOI: 10.37118/ijdr.27142.09.2023
  21. Boutroue, B., Bourblanc, M., Mayaux, P. L., Ghiotti, S., & Hrabanski, M. (2022). The politics of defining maladaptation: enduring contestations over three (mal) adaptive water projects in France, Spain and South Africa. International Journal of Agricultural Sustainability20(5), 892-910.‌ DOI:10.1080/14735903.2021.2015085
  22. Ceesay, E. K., & Ndiaye, M. B. O. (2022). Climate change, food security and economic growth nexus in the Gambia: Evidence from an econometrics analysis. Research in Globalization5, 100089.‌ DOI:10.1016/j.resglo.2022.100089
  23. Chi, C. F., Lu, S. Y., Hallgren, W., Ware, D., & Tomlinson, R. (2021). Role of spatial analysis in avoiding climate change maladaptation: A systematic review. Sustainability, 13(6), 3450.‌ DOI:10.3390/su13063450
  24. Clune, S., Crossin, E., Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766e783. DOI:10.1016/j.jclepro.2016.04.082
  25. D'Abramo, L. R. (2021). Sustainable aquafeed and aquaculture production systems as impacted by challenges of global food security and climate change. Journal of the World Aquaculture Society, 52(6), 1162-1167.‌ DOI:10.1111/jwas.12867
  26. Dey, S., Singh, P. K., Abbhishek, K., Singh, A., & Chander, G. (2023). Climate-resilient agricultural ploys can improve livelihood and food security in Eastern India. Environment, Development and Sustainability, 1-24.‌ DOI:10.1007/s10668-023-03176-2
  27. Finkelstein, S. R., Hagen, L., & Pereira, B. (2024). When Is Food Consumption Maladaptive?. In Maladaptive Consumer Behavior: Theory, Research, and Intervention (pp. 129-164). Cham: Springer Nature Switzerland. DOI:10.1007/978-3-031-60199-6_6
  28. Fischer, A. P., Shah, M. A. R., Segnon, A. C., Matavel, C., Antwi-Agyei, P., Shang, Y., ... & Kaufmann, R. (2023). Human adaptation to climate change in the context of forests: a systematic review. Climate Risk Management, 100573.‌ DOI:10.1016/j.crm.2023.100573
  29. ‌Forsyth, T., & McDermott, C. L. (2022). When climate justice goes wrong: Maladaptation and deep co-production in transformative environmental science and policy. Political Geography, 98, 102691. DOI:10.1016/j.polgeo.2022.102691
  30. Gebre, G. G., Amekawa, Y., & Fikadu, A. A. (2023). Farmers′ use of climate change adaptation strategies and their impacts on food security in Kenya. Climate Risk Management40, 100495. DOI:10.1016/j.crm.2023.100495
  31. Gebre, G. G., Amekawa, Y., Fikadu, A. A., & Rahut, D. B. (2023). Do climate change adaptation strategies improve farmers’ food security in Tanzania?. Food Security15(3), 629-647.‌ DOI:10.1007/s12571-023-01348-6
  32. Ghahramanzadeh, M., Jafarzadeh, F., & Fathi, R. (2022). Analysis of food insecurity and the economic value of food in Iran. Agricultural Economics and Development, 36(3), 207-225. DOI: 10.22059/IJAEDR.2018.244244.668507 [In Persian]
  33. Glover, L., & Granberg, M. (2021). The politics of maladaptation. Climate, 9(5), 69. DOI:10.3390/cli9050069
  34. Guodaar, L., Asante, F., Eshun, G., Abass, K., Afriyie, K., Appiah, D. O., ... & Kpenekuu, F. (2020). How do climate change adaptation strategies result in unintended maladaptive outcomes? Perspectives of tomato farmers. International Journal of Vegetable Science, 26(1), 15-31.‌ DOI:10.1080/19315260.2019.1573393
  35. Herrera-Franco, G., Bollmann, H. A., Lofhagen, J. C. P., Bravo-Montero, L., & Carrión-Mero, P. (2023). Approach on water-energy-food (WEF) nexus and climate change: A tool in decision-making processes. Environmental Development, 46, 100858.‌ DOI:10.1016/j.envdev.2023.100858
  36. Hiç, C., Pradhan, P., Rybski, D., & Kropp, J. P. (2016). Food surplus and its climate burdens. Environmental science & technology, 50(8), 4269-4277.‌ DOI:10.1021/acs.est.5b05088
  37. Hilemelekot, F., Ayal, D. Y., Ture, K., & Zeleke, T. T. (2021). Climate change and variability adaptation strategies and their implications for household food Security: the case of Basona Worena District, North Shewa zone, Ethiopia. Climate Services24, 100269. DOI:10.1016/j.cliser.2021.100269
  38. Ho, C. H., Chen, J. L., Nobuyuki, Y., Lur, H. S., & Lu, H. J. (2016). Mitigating uncertainty and enhancing resilience to climate change in the fisheries sector in Taiwan: Policy implications for food security. Ocean & Coastal Management130, 355-372.‌ DOI:10.1016/j.ocecoaman.2016.06.020
  39. Hussain, A., Rasul, G., Mahapatra, B., & Tuladhar, S. (2016). Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Security, 8, 921-937.‌DOI:10.1007/s12571-016-0607-5
  40. Ivanova, D., Stadler, K., Steen-Olsen, K., Wood, R., Vita, G., Tukker, A., Hertwich, E.G., (2016).. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526e536. https://doi.org/10.1111/jiec.12371.
  41. Javadi, A., Ghahremanzadeh, M., Sassi, M., Javanbakht, O., & Hayati, B. (2023). Economic evaluation of the climate changes on food security in Iran: application of CGE model. Theoretical and applied climatology, 151(1-2), 567-585.‌ DOI:10.1007/s00704-022-04289-w [In Persian]
  42. ‌Kabubo-Mariara, J., & Mulwa, R. (2019). Adaptation to climate change and climate variability and its implications for household food security in Kenya. Food security11, 1289-1304. DOI:10.1007/s12571-019-00965-4‌
  43. Karami, E., & Keshavarz, M. (2023). Climate Change: The New Normal Management. In Climate Change, World Consequences, and the Sustainable Development Goals for 2030 (pp. 46-72). IGI Global.‌ DOI:10.4018/978-1-6684-4829-8.ch003
  44. Kargar Dehbidi, N., Zibaei, M., & Tarazkar, M. H. (2022). The effect of climate change and energy shocks on food security in Iran's provinces. Regional Science Policy & Practice14(2), 417-437.‌ DOI:10.1111/rsp3.12517
  45. Kerr, R. B. (2023). Maladaptation in food systems and ways to avoid it. Current Opinion in Environmental Sustainability, 61, 101269. DOI:10.1016/j.cosust.2023.101269
  46. Khan, S., Vidyant, S., & Chatterjee, A. (2023). Bionanotechnology: A Recommended Solution for Food Security, Climate Change, and Wastewater Treatment. In Bionanotechnology Towards Sustainable Management of Environmental Pollution (pp. 269-286). CRC Press.‌
  47. Kocaadam-Bozkurt, B., & Bozkurt, O. (2023). Relationship between adherence to the Mediterranean diet, sustainable and healthy eating behaviors, and awareness of reducing the ecological footprint. International Journal of Environmental Health Research, 33(4), 430-440.‌ DOI: 10.1080/09603123.2023.2172384
  48. Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability23, 23-43. DOI:10.1007/s10668-020-00589-1
  49. Kundu, S., Morgan, E. A., & Smart, J. C. (2024). Farmers perspectives on options for and barriers to implementing climate resilient agriculture and implications for climate adaptation policy. Environmental Science & Policy, 151, 103618. DOI:10.1016/j.envsci.2023.103618
  50. Kwak, S. S. (2019). Biotechnology of the sweetpotato: ensuring global food and nutrition security in the face of climate change. Plant Cell Reports, 38(11), 1361-1363.‌ DOI:10.1007/s00299-019-02468-0
  51. Madonsela, S. (2023). Climate-Security and the Anthropocene: The Case of Mali. In African Security in the Anthropocene (pp. 51-60). Cham: Springer Nature Switzerland.‌
  52. Magnan, A. K., Schipper, E. L. F., Burkett, M., Bharwani, S., Burton, I., Eriksen, S., ... & Ziervogel, G. (2016). Addressing the risk of maladaptation to climate change. Wiley Interdisciplinary Reviews: Climate Change, 7(5), 646-665.‌ DOI:10.1002/wcc.409
  53. Mekonnen, A., Tessema, A., Ganewo, Z., & Haile, A. (2021). Climate change impacts on household food security and adaptation strategies in southern Ethiopia. Food and Energy Security10(1), e266.‌ DOI:10.1016/j.jafr.2021.100197
  54. Metin, Z. E., Çelik, Ö. M., & Koç, N. (2024). Relationship between adherence to the Mediterranean diet, sustainable and healthy eating behaviors, and climate change awareness: A cross-sectional study from Turkey. Nutrition, 118, 112266. DOI:10.1016/j.nut.2023.112266
  55. Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues7(4), 2897.‌ DOI:10.9770/jesi.2020.7.4(21)
  56. Miralles, C. C., Barioni, D., Mancini, M. S., Jordà, J. C., Roura, M. B., Salas, S. P., ... & Galli, A. (2023). The footprint of tourism: A review of water, carbon, and ecological footprint applications to the tourism sector. Journal of Cleaner Production, 138568. DOI:10.1016/j.jclepro.2023.138568‌
  57. Misra, A. K. (2014). Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1), 153-165. DOI:10.1016/j.ijsbe.2014.04.006
  58. Mustafa, M. A., Mabhaudhi, T., & Massawe, F. (2021). Building a resilient and sustainable food system in a changing world–a case for climate-smart and nutrient dense crops. Global Food Security, 28, 100477.‌ DOI:10.1016/j.gfs.2020.100477
  59. Naresh, R. K., Bhatt, R., Singh, P. K., Kumar, Y., Tiwari, H., Saini, A., ... & Thakur, H. (2023). Millet: The super food in context of climate change for combating food and water security: A review.‌
  60. Ndiritu, S. W., & Muricho, G. (2021). Impact of climate change adaptation on food security: evidence from semi-arid lands, Kenya. Climatic Change167(1-2), 24.‌ DOI:10.21203/rs.3.rs-174615/v1
  61. Nydrioti, I., & Grigoropoulou, H. (2023). Using the water footprint concept for water use efficiency labelling of consumer products: the Greek experience. Environmental Science and Pollution Research, 30(8), 19918-19930.‌ DOI:10.1007/s11356-022-23573-w
  62. Onyutha, C. (2019). African food insecurity in a changing climate: The roles of science and policy. Food and Energy Security8(1), e00160.‌ DOI:10.1002/fes3.160
  63. Oyelami, L. O., Edewor, S. E., Folorunso, J. O., & Abasilim, U. D. (2023). Climate Change, Institutional Quality and Food Security: Sub-Saharan African Experiences. Scientific African, e01727.‌ DOI:10.1016/j.sciaf.2023.e01727
  64. Pais, D. F., Marques, A. C., & Fuinhas, J. A. (2023). How to promote healthier and more sustainable food choices: The case of Portugal. Sustainability, 15(4), 3868. DOI:10.3390/su15043868
  65. Palanivel, H., & Shah, S. (2021). Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific. Environment, Development and Sustainability23(10), 14264-14323.‌ DOI: 10.1007/s10668-021-01273-8
  66. Paul Jr, M., Aihounton, G. B., & Lokossou, J. C. (2023). Climate-smart agriculture and food security: Cross-country evidence from West Africa. Global Environmental Change81, 102697. DOI:10.1016/j.gloenvcha.2023.102697
  67. Pisor, A., Touma, D., Singh, D., & Jones, J. H. (2023). To understand climate change adaptation we must characterize climate variability. Here’s how.‌ DOI: 10.1016/j.oneear.2023.11.005
  68. Rahimi, H., & Sadeghinia, A. (2023). Climate change and agriculture in Najafabad city: Assessment of impacts and adaptation strategies. Rural Research, 14(4), 592-609.DOI: 10.22059/JRUR.2023.355890.1830 [In Persian]
  69. Rasul, G. (2021). Twin challenges of COVID-19 pandemic and climate change for agriculture and food security in South Asia. Environmental Challenges2, 100027.‌ DOI:10.1016/j.envc.2021.100027
  70. Rodríguez‐Jiménez, L., Romero‐Martín, M., Spruell, T., Steley, Z., & Gómez‐Salgado, J. (2023). The carbon footprint of healthcare settings: a systematic review. Journal of advanced nursing, 79(8), 2830-2844.‌ DOI: 10.1111/jan.15671
  71. Sahoo, G., Mishra, P., Wani, A. M., Sharma, A., Mishra, D., Patra, D., ... & Behera, M. (2023). Impact of Climate Change on Livelihood Security and Biodiversity–Issues and Mitigation Strategies. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems (pp. 1-27). Cham: Springer International Publishing. DOI:10.1007/978-3-031-19059-9_1
  72. Santosh, M., Groves, D. I., & Yang, C. X. (2024). Habitable planet to sustainable civilization: Global climate change with related clean energy transition reliant on declining critical metal resources. Gondwana Research, 130, 220-233.‌ DOI:10.1016/j.gr.2024.01.013
  73. Schipper, E. L. F. (2020). Maladaptation: when adaptation to climate change goes very wrong. One Earth3(4), 409-414.‌ DOI:10.1016/j.oneear.2020.09.014
  74. Shisanya, S., & Mafongoya, P. (2016). Adaptation to climate change and the impacts on household food security among rural farmers in uMzinyathi District of Kwazulu-Natal, South Africa. Food security, 8, 597-608.‌ DOI:10.1007/s12571-016-0569-7
  75. Solaimani, S. (2018). Impacts of climate change on food security and agriculture sector in Malaysia. Environment, Development and Sustainability, 20(4), 1575-1596.
  76.  Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual review of environment and resources, 37(1), 195-222.‌ DOI:10.1146/annurev-environ-020411-130608
  77. Wakatsuki, H., Ju, H., Nelson, G. C., Farrell, A. D., Deryng, D., Meza, F., & Hasegawa, T. (2023). Research trends and gaps in climate change impacts and adaptation potentials in major crops. Current Opinion in Environmental Sustainability, 60, 101249.‌ DOI:10.1016/j.cosust.2022.101249
  78. Wijerathna-Yapa, A., & Pathirana, R. (2022). Sustainable agro-food systems for addressing climate change and food security. Agriculture12(10), 1554.‌ DOI:10.3390/agriculture12101554
  79. Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., ... & Murray, C. J. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The lancet393(10170), 447-492. DOI: 10.1016/S0140-6736(18)31788-4
  80. Yao, P., Fan, H., Wu, Q., Ouyang, J., & Li, K. (2023). Compound impact of COVID-19, economy and climate on the spatial distribution of global agriculture and food security. Science of The Total Environment880, 163105. DOI:10.1016/j.scitotenv.2023.163105
  81. Zembe, A., Nemakonde, L. D., & Chipangura, P. (2023). A policy coherence framework for food security, climate change adaptation and disaster risk reduction in South Africa. International Journal of Disaster Risk Reduction95, 103877. DOI:10.1016/j.ijdrr.2023.103877