نیت کشاورزان به سازگاری با تغییرات اقلیمی، کاربرد مدل توسعه‌یافته تلفیق تئوری‌های رفتار برنامه‌ریزی‌شده و انگیزش حفاظت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب و مدیریت کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه ترویج و آموزش کشاورزی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

در سال‌های اخیر تغییر اقلیم به یکی از مهم‌ترین چالش‌های جهانی و تهدیدکننده محیط‌زیست و امنیت غذایی جهانی تبدیل گردید. پژوهش حاضر به بررسی نیت و رفتار سازگاری کشاورزان شهرستان مشکین‌شهر با تغییرات اقلیم با استفاده از مدل توسعه‌یافته تلفیقی نظریه‌های رفتار برنامه‌ریزی‌شده و انگیزش حفاظت پرداخت. نتایج نشان داد که مدل فوق 84% از واریانس نیت و نیت نیز 56% از واریانس رفتار را تبیین کرده است. آسیب‌پذیری درک شده مهم‌ترین عامل تأثیرگذار بر نیت سازگاری بود. شدت درک شده تأثیر معنی‌داری بر نیت نداشت که نشان می‌دهد اگرچه کشاورزان تا حدودی بر آسیب‌پذیری از تغییرات اقلیمی واقف بودند، آگاهی چندانی در زمینه شدت اثرات و پیامدهای تغییرات اقلیم نداشتند. ازآنجاکه تغییرات اقلیمی اثرات تدریجی بر زندگی کشاورزان دارد و کشاورزان درک کاملی از این موضوع ندارند، لازم است از طریق رسانه‌های جمعی، فیلم‌های آموزشی و سایر پیکارهای ترویجی، کشاورزان با شدت اثرات این تغییرات آشنا شوند. خود-کارآمدی تأثیر معنی‌داری بر نیت داشت لذا، آموزش‌های ترویجی باید بتواند توانمندی لازم برای کاربست فنون سازگاری به طریقی آسان و کم‌هزینه ایجاد کند. تأثیر نگرش بر نیت نشان داد که لازم است نگرش کشاورزان نسبت به تغییرات آب‌وهوایی اصلاح شود. با توجه به تأثیر اعتماد و باور بر نیت کشاورزان، لازم است باور کشاورزان به اهمیت و اثرات ناگوار این تغییرات تقویت شود و کارشناسان اعتماد کشاورزان را نسبت به اثربخشی شیوه‌های سازگاری با تغییرات اقلیمی جلب نمایند. از نظر جنسیت، تحصیلات، محل سکونت و تعداد اعضای خانوار تفاوت‌های معنی‌داری در نیت سازگاری کشاورزان با تغییرات اقلیمی یافت شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Farmers’ Intention to Adapt to Climate Change: An Application of an Extended Version of Integrated Planned Behavior and Protection Motivation Theories

نویسندگان [English]

  • Asghar Bagheri 1
  • Naierer Emami 2
1 Department of Water and Agricultural Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Agricultural Extension and Education, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

 A B S T R A C T
Climate change has become one of the most important global challenges threatening the environment and food security. This study utilized an integrated model of the theory of planned behavior and protection motivation to examine farmers' intentions and behaviors regarding climate change adaptation in Meshkinshahr County. Results showed that the model explained 84% of the variance in intention and 56% of the variance in behavior. Perceived vulnerability was the most significant factor influencing intention. Perceived severity had no significant effect on intention, suggesting that farmers were aware of the vulnerability of climate change but did not know enough about its severity. Since the impact of climate change is gradual and farmers do not have a complete understanding of this issue, it is necessary to familiarize them with the extent of climate change impacts through mass media, educational videos, and other extension campaigns. Self-efficacy had a significant influence on the intention; therefore, extension training should be provided to enable them to apply adaptation techniques cost-effectively. The impact of attitude on intention showed a need to improve farmers' attitudes towards climate change. Considering the impact of trust and belief on farmers' intentions, it is necessary to increase farmers' belief in the importance and adverse impacts of these changes and to gain farmers' trust in the effectiveness of climate change adaptation methods. Significant differences in farmers' intentions to adapt to climate change were found in terms of gender, education, place of residence, and number of family members.
Extended abstract
Introduction
Global climate change has increasingly emerged as one of the most significant global challenges threatening the environment and global food security, particularly in less developed regions. The direct impacts of climate change on the agricultural sector include food insecurity, an increase in pests and diseases that negatively impact agricultural productivity, increased erosion and a decline in soil fertility. It is important to mitigate these impacts by enabling farmers to adapt and cope with the negative impacts on agriculture and their livelihoods. Effective adaptation can significantly reduce the magnitude of climate change impacts. Adaptation refers to actions to maintain a system's ability to cope with climate change. It can significantly reduce vulnerability to change and protect the rural community in mitigating potential risks and coping with the negative consequences of change. Various theories and models have been developed to analyze people's intentions and behaviors. Ajzen's theory of planned behavior (TPB) is one of the most widely used theories. It assumes that a person's intention to engage in a certain behavior is influenced by their attitudes, subjective norms, and perceived behavioral control. The Protection Motivation Theory (PMT), developed by Davis et al. (2015), was used to assess how motivation influences individuals' health behaviors. The PMT consists of two components: threat appraisal, which is measured by perceived threat and perceived severity, and coping appraisal, which is measured by self-efficacy, response efficacy, and response cost. This study used an extended model integrating TPB and PMT to examine farmers' intentions and behaviors related to climate change adaptation.
 
Methodology
This study was conducted in Meshkinshahr County. A cross-sectional survey method utilizing a multi-stage sampling strategy was employed for data collection. The statistical population comprised orchard farmers in the county. A sample of 220 farmers was selected using the Cochran formula. The research instrument was a questionnaire. It developed based on the study's theoretical framework and a comprehensive literature review. The questionnaire included the respondents' socioeconomic characteristics and eight model constructs. A panel of experts validated the research tool. A pilot study was conducted with 30 farmers outside the sample area to test the validity of the questionnaire and make any necessary corrections. The calculated alpha values for all constructs were above 0.7, indicating acceptable reliability of the research instrument. SPSS version 22 was used for initial statistical analyses, and Structural Equation Modeling (SEM) with PLS software was utilized to model and predict the effects of factors influencing farmers' intentions and behaviors regarding adaptation. The goodness of fit for the model was assessed first. The reliability of the research model was confirmed using composite reliability coefficients and Cronbach's alpha. Indicators of discriminant validity, as well as convergent and divergent validity, were employed to evaluate the model's validity.
 
Results and Discussion
The results indicated that, with the exception of perceived severity, all hypotheses of the study were confirmed, explaining 84% of the variance in intention. The perceived vulnerability had the most significant impact on farmers' intentions, suggesting that their willingness to adapt to climate change largely depends on their perception of vulnerability. The significant effect of attitude on intention implies that a positive attitude toward new ideas leads to better preparation and a greater intention to implement them. Self-efficacy also significantly affected intention, indicating that individuals with higher perceived self-efficacy are more likely to seek coping strategies and take adaptation measures when facing challenges such as climate change. The significant influence of trust on intention shows that farmers are more inclined to adapt when they trust government officials and agricultural experts. Furthermore, the positive effect of belief in climate change on intention highlights that as farmers increasingly recognize changing climate conditions, they are more willing to adapt. This finding underscores the necessity for extension services to provide relevant information that aids farmers in adapting to climate change. Conversely, the lack of a significant effect of perceived severity on intention may stem from inadequate policy interventions and farmers' limited understanding of climate change. Additionally, behavioral intention positively affected actual adaptation behavior, explaining 56% of the variance in that behavior, thus confirming the foundational premise of the TPB. Moreover, significant differences in socioeconomic variables were evident among farmers based on gender, education, family size, and place of residence. Male and more educated farmers and those with larger families in rural areas were more likely to adapt to climate change.
 
Conclusion
Utilizing an extended model of the integrated TPB-PMT, this study explored farmers' intentions and behaviors related to climate change adaptation in Meshkinshahr County. The model successfully explained variance in farmers’ intentions, which in turn accounted for 56% of the variance in behavior. The findings offer new insights into the effectiveness of these theories in predicting farmers’ intentions and their adoption of climate change adaptation strategies, with important implications for agricultural policy and extension services. Among the model constructs, perceived vulnerability emerged as the most crucial factor influencing intention, while perceived severity showed no significant impact, indicating that farmers are somewhat aware of their vulnerability to climate change but lack sufficient knowledge of the severity of its consequences. As climate change continues to affect the agricultural sector, it is vital to conduct extension campaigns to educate and prepare farmers for adaptation.
 
Funding
This research was supported by the University of Mohaghegh Ardabili (Research grant number 1402/d/9/11487).
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
 We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Vulnerability
  • Environment
  • Adaptive Behavior
  • Behavioral Theories
  • Protective Measures
  1. آزادی، یوسف؛ یزدان پناه، مسعود؛ فروزانی، معصومه و محمودی، حسین. (1397). بررسی عوامل مؤثر بر ادراک خطر مواجهه با تغییرات آب و هوایی (موردشناسی: کشاورزان گندم‌کار شهرستان کرمانشاه). جغرافیا و مخاطرات محیطی، 7 (27)، 134-121 doi 10.22067/GEO.V0I0.71853.
  2. اسراری، امیررضا؛ امیدی نجف‌آبادی، مریم و فرج‌الله حسینی، سیدجمال. (1399). واکاوی سازه‌های مؤثر بر رفتار تاب‌آوری باغداران پسته مناطق روستایی رفسنجان در برابر تغییرات اقلیمی. علوم و فناوری پسته، 5(10)، 229-204.
  3. پازوکی نژاد، زهرا و باقریان، مصطفی. (1397). نگرش کشاورزان نسبت به کارآفرینی کشاورزی برای مقابله اثرات زیان‌بار تغییر اقلیم و عوامل مؤثر بر آن. راهبردهای کارآفرینی در کشاورزی، 5(9)، 57-51  doi 10.29252/jea.5.9.51
  4. پازوکی نژاد، زهرا و صالحی، صادق. (1393). تحلیل عوامل اجتماعی مؤثر بر نگرش و عملکرد زیست - محیطی دانشجویان. جامعه‌شناسی کاربردی، 25(3)، 88-71. dor 20.1001.1.20085745.1393.25.3.5.6
  5. پاکمهر، صدیقه؛ یزدان پناه، مسعود و برادران، مسعود. (1400). تبیین رفتار کشاورزان در رویارویی با مسئلۀ کم‌آبی، جامعه‌شناسی کاربردی، 32، 3(83)، 154-135 doi  10.22108/JAS.2021.113630.1526
  6. خالدی، فخرالدین؛ زرافشانی، کیومرث؛ میرک زاده، علی اصغر و شریفی، لیدا. (1394). بررسی عوامل مؤثر بر توان سازگاری کشاورزان در برابر تغییرات اقلیم (مطالعة موردی: گندم‌کاران شهرستان سرپل ذهاب، استان کرمانشاه). پژوهش‌های روستایی، 6 (3-3)، 678-655 doi:10.22059/JRUR.2015.56064
  7. دلفیان، فرح؛ یزدان‌پناه، مسعود؛ فروزانی، معصومه و یعقوبی، جعفر. (1396). بررسی رفتارهای مدیریتی کشاورزان در هنگام خشک‌سالی به‌عنوان پاسخ‌های پیشگیرانه موردمطالعه: شهرستان دهلران. تحلیل فضایی مخاطرات محیطی، 4(4)،92-79
  8. دهقانپور، مجتبی؛ یزدان پناه، مسعود، فروزانی، معصومه و عبدالله زاده، غلامحسین. (1399). ارزیابی پایداری سیاست‌های سازگاری کشاورزی با تغییرات اقلیم از دیدگاه کارشناسان وزارت جهاد کشاورزی. پژوهش‌های روستایی، 11(1)، 49-36 doi:10.22059/JRUR.2019.288664.1402
  9. سواری، مسلم. و شوکتی امجانی، محمد. (1398). شناسایی راهکارهای سازگاری کشاورزان کوچک‌مقیاس در مقابله با خشک‌سالی در استان آذربایجان غربی. برنامه‌ریزی فضایی، 9 (4)، 42-17 doi 10.22108/SPPL.2019.116467.1373
  10. شریعت‌زاده، مریم؛ بیژنی، مسعود و مرید، سعید. (1402). رفتار سازگاری کشاورزان شهرستان خوی در برابر تغییرات اقلیمی، فصلنامه علوم محیطی. 21(2)، 152-139. doi:10.48308/ENVS.2022.1243
  11. Adu, D.T., Kuwornu, J.K.M, Anim-Somuah, H., & Sasaki, N. (2018). Application of livelihood vulnerability index in assessing smallholder maize farming households' vulnerability to climate change in Brong-Ahafo region of Ghana. Kasetsart Journal of Social Sciences, 39 (1), 22-32. https://doi.org/10.1016/j.kjss.2017.06.009
  12.  Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  13. Ali, A., & Erenstein, O. (2017). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan, Climate Risk Management, 16, 183-194. https://doi.org/10.1016/j.crm.2016.12.001
  14. An, F., Xi, L., Yu, J., & Zhang, M. (2022). Relationship between technology acceptance and self-directed learning: Mediation role of positive emotions and technological self-efficacy. Sustainability, 14(16), 1-13. https://doi.org/10.3390/su141610390.
  15. Arbuckle J.G.Jr., Morton, L.W., & Hobbs, J. (2015). Understanding farmer perspectives on climate change adaptation and mitigation: The roles of trust in sources of climate information, climate change beliefs, and perceived risk. Environment and Behavior. 47(2): 205-234. doi: 10.1177/0013916513503832.
  16.  Asrari, A.R., Omidi Najafabadi, M., & Farajollah Hosseini, S.J. (2021). Analysis of structures affecting the resilience behavior of Rafsanjani Pistachio growers against climate change, Pistachio Science and Technology, 5(10), 204-229. [In Persian]
  17. Asrat, P., & Simane, B. (2017). Household and plot-level impacts of sustainable land management practices in the face of climate variability and change: Empirical evidence from Dabus Sub-basin, Blue Nile River, Ethiopia, Agriculture & Food Security, 6(61). https://doi.org/10.1186/s40066-017-0148-y
  18. Azadi, Y., Yazdanpanah, M., Forouzani, M., & Mahmoudi, H. (2019). Investigating the Factors Affecting the Risk Perception of Exposure to Climate Change: A Case Study of Wheat Farmers in Kermanshah. Geography and Environmental Hazards, 7, 3(27), 121-134. doi 10.22067/GEO.V0I0.71853. [In Persian]
  19. Bradley, G.L., & Reser, J.P. (2017). Adaptation processes in the context of climate change: A social and environmental psychology perspective. Journal of Bioeconomics, 19, 29–51. https://doi.org/10.1007/s10818-016-9231-x
  20. Bryan, E., Deressa, T.T., Gbetibouo, G.A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environmental Science and Policy, 12(4), 413–426. https://doi.org/10.1016/j.envsci.2008.11.002
  21. Ceci, P., Monforte, L., Perelli, C., Cicatiello, C., Branca, G., Franco, S., Diallo, F., Blasi, E., & Mugnozza, G. (2021). Smallholder farmers’ perception of climate change and drivers of adaptation in agriculture: A case study in Guinea. Review of Development Economics, 25(4), 1991–2012. doi.org/10.1111/rode.12815
  22. Cox, D.N., & Bastiaans, K. (2007). Understanding Australian consumers’ perceptions of selenium and motivations to consume selenium enriched foods. Food Quality and Preference, 18(1), 66-76. https://doi.org/10.1016/j.foodqual.2005.07.015
  23. Davis, R., Campbell, R., Hildon, Z., Hobbs, L., & Michie, S. (2015). Theories of behavior and behavior change across the social and behavioral sciences: A scoping review. Health psychology review, 9(3), 323-344. doi: 10.1080/17437199.2014.941722.
  24. Dehghanpour, M., Yazdanpanah, M., Forouzani, M., & Abdolahzadeh, G. (2020). Ministry of Agriculture Jihad experts' assessment of sustainability of agricultural adaptation policies to climate change, Journal of Rural Research, 11(1), 36-49. doi:10.22059/JRUR.2019.288664.1402. [In Persian]
  25. Delfian, F., Yazdanpanah, M., Forouzani, M., & Yaghoubi, J. (2018). Investigating farmers’ behavior management in drought period as prevention responses: The case of Dehloran district. Journal of Spatial Analysis Environmental Hazards, 4(4), 79-92. [In Persian]
  26. Fornell, C., & Larcker, D.F. (1981). Structural equation models with unobservable variables
    and measurement error, Algebra and Statistics, Journal of marketing Reseasrch, 18(3), 382–388. https://doi.org/10.2307/3150980
  27. Gabrielle, E., Roesch-McNally, J., Arbuckle, G., & Tyndall, J.C. (2017). What would farmers do? Adaptation intentions under a Corn Belt climate change scenario. Agriculture and Human Values, 34, 333–346. doi 10.1007/s10460-016-9719-y.
  28. Gold, A., Malhotra, A., & Segars, A. (2001) Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18, 185-214. https://doi.org/10.1080/07421222.2001.11045669.
  29. Goyal, M.K., Ojha, C.S.P., Surampalli, R.Y., & Choudhury, A. (2016). Adapting to Climate Change: Water Management Strategy, In: Green Technologies for Sustainable Water Management, 737-752. doi:10.1061/9780784414422.ch21
  30. Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2006). Multivariate Data
    Analysis, 6th Edn. Upper Saddle River: Pearson Prentice Hall
  31. Hair J., Hult, G.T.M., Ringle, C., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM), second edition. SAGE Publications, Incorporated.
  32. Haque, A., Karim, W., Kabir, S., & Tarofder, K. (2020). Understanding social distancing intention among university students during Covid-19 outbreak: An application of protection motivation theory. Test Engineering and Management, 83, 16360–16377.
  33. Henseler, J., Ringle, C.M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Sciece, 43, 115–135 (2015). https://doi.org/10.1007/s11747-014-0403-8
  34. IPCC. (2007). Summary for policy makers, climate change 2007: The physical science Basis, Contribution of Working Group I to the Fourth Assessment Report, Cambridge University Press, Cambridge.
  35. James, C., Song, S.H., & Soule, S. (2018). Factors influencing farmers’ climate change adaptation in Northern Ghana: evidence from subsistence farmers in Sissala West, Ghana. Journal of Environmental Science and Management 21-1: 61-73. doi 10.47125/jesam/2018_1/06
  36. Jamshidi, O., Asadi, A., Kalantari, K.H., & Azadi, H. (2018). Perception, Knowledge, and Behavior towards Climate Change: A Survey among Agricultural Professionals in Hamadan Province, Iran. Journal of Agricultural Science and Technology, 20, 1369-1382. dor 20.1001.1.16807073.2018.20.7.13.7
  37. García-Jiménez, C.I., Velandia, M., Lambert, D.M., & Mishra, A.K. (2022). Information sources impact on the adoption of precision technology by cotton farmers in the United States. Agrociencia. https://doi.org/10.47163/agrociencia.v56i1.2688
  38. Jha, C.K., & Gupta, V. (2021). Farmer’s perception and factors determining the adaptation decisions to cope with climate change: evidence from rural India. Environmental and Sustainability Indicators, 10), 100112. https://doi.org/10.1016/j.indic.2021.100112
  39. Kamrath, C., Rajendran, S., Nenguwo, N., Afari-Sefa, V., & Bröring, S. (2018). Adoption behavior of market traders: An analysis based on technology acceptance model and theory of planned behavior. International Food and Agribusiness Management Review, 21(6), 1-20. doi 10.22434/IFAMR2017.0043
  40. Karimi, H., & Ataei, P. (2022). Farmers’ cultural biases and adaptation behavior towards
    drought: A case in Sistan plain. Journal of Agricultural Science and Technology, 24(4), 793-809.
  41. Khaledi, F., Zarafshani, K., Mirakzadeh, A.A., & Sharafi, L. (2015). Factors influencing on farmers’ adaptive capacities to climate change (wheat farmers in Sarpole Zahab township, Kermanshah province). Rural Research, 6(3-3), 655-678. doi:10.22059/JRUR.2015.56064. [In Persian]
  42. Kline, R.B. (2011). Principles and practice of structural equation modeling. Third Edition (New York: The Guilford Press). ISBN 9781462551910
  43. Kim, S., Jeong, S.H., & Hwang, Y. (2012). Predictors of pro-environmental behaviors of American and Korean students: The application of the theory of reasoned action and protection motivation theory. Science Communication. 35(2), 168-188. https://doi.org/10.1177/1075547012441692
  44. Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environment Development and Sustainability, 23(1), 23–43. https:// doi.org/10.1007/s10668-020-00589
  45. Lasram, A., Dellagi, H., Dessalegn, B., Dhehibi, M., & Mechlia, N.B. (2018). Farmers’ willingness to adapt to climate change for sustainable water resources management: a case study of Tunisia. Journal of Water and Climate Change, 9(3), 598-610. https://doi.org/10.2166/wcc.2018.171
  46. Le Dang, H., Li, E., Nuberg, I., & Bruwer, J. (2014). Farmers’ assessments of private adaptive measures to climate change and influential factors: a study in the Mekong Delta, Vietnam. Natural Hazards, 71, 385–401. https://doi.org/10.1007/s11069-013-0931-4
  47. Li, J., Zuo, J., Cai, H., & Zillante, G. (2018). Construction waste reduction behavior of contractor employees: an extended theory of planned behavior model approach. J. Cleaner Production 172, 1399-1408. https://doi.org/10.1016/j.jclepro.2017.10.138
  48. Liao, Y., Wu, W., Le, T., & Phung, T. (2022). The integration of the technology acceptance model and value-based adoption model to study the adoption of e-learning: The moderating Role of e-WOM. Sustainability, 14, 815. https://doi.org/10.3390/su14020815.
  49. Luu, T.A., Nguyen, A.T., Trinh, Q.A., Pham, V.T., Le, B.B., Nguyen, D.T., Gyang, Q.N., Pham, H.T.T., Nguyen, T.K., Luu, V.N., & Hens, L. (2019). Farmers’ intention to climate change adaptation in agriculture in the Red River Delta Biosphere Reserve (Vietnam): A combination of structural equation modeling (SEM) and protection motivation theory (PMT), Sustainability, 11(10), 2993. https://doi.org/10.3390/su11102993
  50. Maddison, D. (2007). The perception of and adaptation to climate change in Africa. Policy research working paper 4308, development research group. The World Bank, Washington DC. https://doi.org/10.1596/1813-9450-4308
  51. Mase, A.S., Gramig, B.M., & Prokopy, L.S. (2017). Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management,15, 8-17. https://doi.org/10.1016/j.crm.2016.11.004
  52. Mehmood, M., Li, G., Khan, A., Siddiqui, B., Tareen, W., Kubra, A., & Rehman, M. (2022). An evaluation of farmers’ perception, awareness, and adaptation towards climate change: A study from Punjab province Pakistan, Ciência Rural. 52(3), e20201109. https://doi.org/10.1590/0103-8478cr20201109
  53. Mortada, E., Abdel-Azeem, A., Al-Showair, A., & Zalat, M.M. (2021). Preventive behaviors towards Covid-19 pandemic among healthcare providers in Saudi Arabia using the protection motivation theory. Risk Management and Healthcare Policy, 4, 685–694. doi 10.2147/RMHP.S289837
  54. Nakuja, T., Sarpong, D.B., Kuwornu, J.K., & Felix, A.A. (2012). Water storage for dry season vegetable farming as an adaptation to climate change in the upper east region of Ghana. African Journal of Agricultural Research, 7(2), 298- 306.
  55. Neneh, B.N. (2022). Entrepreneurial passion and entrepreneurial intention: The role of social support and entrepreneurial self-efficacy. Studies in Higher Education, 47(3), 587-603. doi: 10.1080/03075079.2020.1770716
  56. Oakley, M., Mohun Himmelweit, S., Leinster, P., & Casado, M. R. (2020). Protection motivation theory: A proposed theoretical extension and moving beyond rationality—the case of flooding. Water, 12(7), 1848. https://doi.org/10.3390/ w1207184.
  57. Pakmehr, S., Yazdanpanah, M., & Baradaran, M. (2021). Investigating the behavior of farmers in the face of water scarcity. Journal of Applied Sociology, 32, 3(83), 135-154. doi  10.22108/JAS.2021.113630.1526. [In Persian]
  58. Pazokinejad Z., & Bageriyan M. (2018). Farmers' attitudes toward agricultural entrepreneurship to adapt with the impact of climate change and its effective factors.  Journal of Entrepreneurial strategies in Agriculture, 5(9), 51-57. doi:10.29252/jea.5.9.51[In Persian]
  59. Pazukinejad, Z., & Salehi, S. (2014). An analysis of social factors affecting students’ environmental attitudes and performance. Journal of applied sociology, 25(3), 71-88. dor: 20.1001.1.20085745.1393.25.3.5.6 [In Persian]
  60. Pramanik, M., Paudel, U., Mondal, B., & Chakraborti, S. (2018). Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India, Climate Risk Management 19, 94-105. https://doi.org/10.1016/j.crm.2017.11.002
  61. Purwanti, T., Syafrial, S., Huang, W., Hartono, B., Rahman, M., & Putritamara, J. (2023). Understanding farmers’ adaptation to climate change: A protection motivation theory application. Cogent Social Sciences, 9, 2282210. https://doi.org/10.1080/23311886.2023.22822.
  62. Rahman, M.S., Huang, W., Toiba, H., Putritamara, J.A., Nugroho, T.W. & Saeri, M. (2023). Climate change adaptation and fishers’ subjective well-being in Indonesia: Is there a link? Regional Studies in Marine Science, 63, 103030. https://doi.org/10.1016/j.rsma. 2023.10303
  63. Rezaei, R., & Ghofranfarid, M. (2018). Rural households’ renewable energy usage intention in Iran: Extending the unified theory of acceptance and use of technology. Renewable Energy, 122, 382-391. https://doi.org/10.1016/j.renene.2018.02.011
  64. Rodrıguez-Cruz, L.A., & Niles, M.T. (2021). Awareness of climate change’s impacts and motivation to adapt are not enough to drive action: A look of Puerto Rican farmers after Hurricane Maria. Plos one, 16(1). https://doi.org/ 10.1371/journal.pone.0244512.
  65. Roesch-McNally, G.E., Gordon Arbuckle, J., & Tyndall, J.C. (2017). What would farmers do? Adaptation intentions under a Corn Belt climate change scenario. Agric Hum Values, 34, 333–346. https://doi.org/10.1007/s10460-016-9719-y
  66. Saguye, T.S. (2017). Assessment of farmers’ perception of climate change and variability and it’s implication for implementation of climate-smart agricultural practices: The case of Geze Gofa District, Southern Ethiopia. Journal of Resources Development and Management, 7(1), 1-4. doi 10.4172/2167-0587.1000191
  67.  savari, M., & Shokati Amghani, M. (2020). Adaptation strategies of Small-Scale Farmers in Confronting Droughts in West Azerbaijan Province Spatial Planning, 9(4), 17-42. doi 10.22108/SPPL.2019.116467.1373. [In Persian]
  68. Schrieks, T., Botzen, W.J.W., Wens, M., Haer, T., & Aerts, J.C.J.H. (2021). Integrating behavioral theories in agent-ased models for agricultural drought risk assessments. Front. Water, 3, 1-19. https://doi.org/10.3389/frwa.2021.686329
  69. Shariatzadeh, M., Bijani, M., & Morid, S. (2023). Farmers' adaptation behavior in the face of climate change in Khoy Township, Environmental Sciences, 21(2), 139-152. doi 10.48308/ENVS.2022.1243. [In Persian]
  70. Singh, A.S. (2015). Cultural worldview, psychological distance, and Americans’ support for
    climate mitigation and adaptation policy
    . Ph.D. Thesis. The

    Ohio State University, Columbus, Ohio, United States of America.
  71. Tapsuwan, S., & Rongrongmuang, W. (2015). Climate change perception of the dive tourism industry in Koh Tao Island, Thailand. Journal of Outdoor Recreation and Tourism, 11, 58-3. https://doi.org/10.1016/j.jort.2015.06.005
  72. Truelove, H.B., Carrico, A.R., & Thabrew, L. (2015). A socio-psychological model for analyzing climate change adaptation: A case study of Sri Lankan paddy farmers. Global Environmental Change. 31, 85-97. https://doi.org/10.1016/j.gloenvcha.2014.12.010
  73. Vo, H., Mizunoya, T., & Nguyen, C. (2021). Determinants of farmers’ adaptation decisions to climate change in the central coastal region of Vietnam. Asia-Pacific Journal of Regional Science, 5(2), 327-349. https://doi.org/10.1007/s41685-020-00181-5.
  74. Yi, H., Chen, H., & Kitkuakul, S. (2018). Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy. Cogent Business & Management, 5(1). https://doi.org/10.1080/23311975.2018.1459006.